Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 51(6): e7118, 2018. tab, graf
Article in English | LILACS | ID: biblio-889111

ABSTRACT

In this study, we investigated the chemical composition, and antioxidant and antibacterial properties of ethanolic extracts of propolis (EEP) from Melipona quadrifasciata quadrifasciata and Tetragonisca angustula. Chemical composition of EEP was determined by colorimetry and chromatographic (HPLC-DAD and UPLC-Q/TOF-MS/MS) analysis. Antimicrobial activity of EEP was evaluated against gram-positive (S. aureus, methicillin-resistant S. aureus, E. faecalis) and gram-negative (E. coli and K. pneumoniae) bacteria by the minimal inhibitory concentration (MIC) test using the microdilution method. Furthermore, the growth curve and integrity of cell membrane of S. aureus and E. coli were investigated using standard microbiological methods. HPLC-DAD analysis showed that the EEP of M. quadrifasciata quadrifasciata has a more complex chemical composition than the EEP of T. angustula. Moreover, UPLC-MS analyses of M. quadrifasciata quadrifascita indicated flavonoids and terpenes as major constituents. The bactericidal activity of both EEPs was higher against gram-positive bacteria than for gram-negative bacteria. The EEP from M. quadrifasciata quadrifasciata presented MIC values lower than the EEP from T. angustula for all tested bacteria. The EEP from M. quadrifasciata quadrifasciata caused lysis of the bacterial wall and release of intracellular components from both E. coli and S. aureus. Our findings indicate that the chemical composition of propolis from stingless bees is complex and depends on the species. The extract from M. quadrifasciata quadrifascita was more effective against gram-positive than gram-negative strains, especially against S. aureus and methicillin-resistant S. aureus compared to T. angustula extract, by a mechanism that involves disturbance of the bacterial cell membrane integrity.


Subject(s)
Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Bees/classification , Gram-Negative Bacteria/drug effects , Propolis/chemistry , Anti-Bacterial Agents/isolation & purification , Antioxidants/isolation & purification , Chromatography, High Pressure Liquid , Colorimetry , Gram-Negative Bacteria/classification , Gram-Positive Bacteria/classification , Microbial Sensitivity Tests , Tandem Mass Spectrometry
2.
Braz. j. med. biol. res ; 46(11): 929-935, 18/1jan. 2013. tab, graf
Article in English | LILACS | ID: lil-694023

ABSTRACT

The rat models currently employed for studies of nerve regeneration present distinct disadvantages. We propose a new technique of stretch-induced nerve injury, used here to evaluate the influence of gabapentin (GBP) on nerve regeneration. Male Wistar rats (300 g; n=36) underwent surgery and exposure of the median nerve in the right forelimbs, either with or without nerve injury. The technique was performed using distal and proximal clamps separated by a distance of 2 cm and a sliding distance of 3 mm. The nerve was compressed and stretched for 5 s until the bands of Fontana disappeared. The animals were evaluated in relation to functional, biochemical and histological parameters. Stretching of the median nerve led to complete loss of motor function up to 12 days after the lesion (P<0.001), compared to non-injured nerves, as assessed in the grasping test. Grasping force in the nerve-injured animals did not return to control values up to 30 days after surgery (P<0.05). Nerve injury also caused an increase in the time of sensory recovery, as well as in the electrical and mechanical stimulation tests. Treatment of the animals with GBP promoted an improvement in the morphometric analysis of median nerve cross-sections compared with the operated vehicle group, as observed in the area of myelinated fibers or connective tissue (P<0.001), in the density of myelinated fibers/mm2 (P<0.05) and in the degeneration fragments (P<0.01). Stretch-induced nerve injury seems to be a simple and relevant model for evaluating nerve regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL